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Holomorphic discrete series and harmonic series unitary 
irreducible representations of non-compact Lie groups: 

R), U(P, d and SO"(2n) 

R C Kingt and B G Wybourne 
Physics Department, University of Canterbury, Christchurch 1, New Zealand 

Received 26 February 1985 

Abstract. Generalised characters of the infinite dimensional, holomorphic, discrete series, 
unitary, irreducible representations of the non-compact groups U(p, 9 ) ,  Sp(2n, R )  and 
SO*(2n)  are explicitly expressed in terms of characters of finite dimensional unitary group 
representations. These formulae are remarkably succinct despite involving certain infinite 
series of Schur functions. Similar formulae are derived for harmonic series unitary rep- 
resentation of both U(p, q )  and Sp(Zn, R ) .  Consideration of the branching rules from 
U ( p ,  9)  to U(q) x U ( p )  and from Sp(2n, R )  to U(n)  enables holomorphic representatizns 
to be identified as a subset of the harmonic representations. The branching rules are 
established in full generality and are then used in the evaluation of tensor products of 
both holomorphic and harmonic representations. In the case of the former a known result 
is recast in terms of closed formulae involving Schur functions and for the latter various 
generalisations of these formulae are given. A conjecture is also made regarding what 
might be the simplest possible formulae covering all holomorphic and harmonic representa- 
tions of Sp(2n, R )  and U(p, 9). Illustrative examples are presented. 

1. Introduction 

Apart from rather trivial one-dimensional representations, all unitary irreducible rep- 
resentations (unirreps) of non-compact Lie groups are necessarily infinite dimensional. 
Despite this, such representations have a role to play in theoretical physics where they 
are encountered for example in the study of the harmonic oscillator (Hwa and Nuyts 
1966, Moshinsky and Quesne 1971), the hydrogen atom (Barut and Kleinert 1967, 
Fronsdal 1967), the theory of nuclear collective motion (Arickx 1976, Rosensteel a,id 
Rowe 1977) and in various models of elementary particles and their interactions 
(Dothan et a1 1965, Salam and Strathdee 1966). 

Unfortunately a complete classification scheme for all such unitary irreducible 
representations of non-compact Lie groups is not yet available even in the case of 
simple Lie groups. However there exists a very extensive mathematical literature on 
the properties of both discrete series representations (Harish-Chandra 1956, 1966, 
Gelfand and Graev 1967, Graev 1968, Gelbart 1973, Schmid 1975, Hecht and Schmid 
1975, Atiyah and Schmid 1977) and harmonic series representations (Anderson e? a1 
1968, Moshinsky and Quesne 1971, Rosensteel and Rowe 1977, Sternberg and Wolf 
1978, Kashiwara and Vergne 1978, Rowe e? a1 1985). It is our purpose here to draw 
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3114 R C King and B G Wybourne 

the attention of theoretical physicists to the salient features of these two overlapping 
classes of representations and to do so in a manner which involves a natural generalisa- 
tion to the non-compact groups of a body of techniques widely used in the case of 
compact groups. 

In this respect we allow our prejudices in favour of the use of Schur functions in 
describing and manipulating characters of finite dimensional unitary irreducible rep- 
resentations of the classical compact Lie groups to be extended to the non-compact case. 

Our specific aim is to demonstrate that the characters of certain infinite dimensional 
unirreps of non-compact Lie groups G may be expressed as an infinite sum of characters 
of finite dimensional unirreps of the corresponding maximal compact subgroups K of 
G. Such a relationship gives explicitly the branching rules from G to K, and may be 
used to determine the irreducible constituents of some tensor products of unirreps of 
cr. 

The main prongs of our attack on this problem are based on fundamental results 
(Harish-Chandra 1956,1966, Schmid 1975, Hecht and Schmid 1975, Atiyah and Schmid 
1977) on the discrete series representations and more recent work on harmonic rep- 
resentations (Kashiwara and Vergne 1978, Rowe et al 1985). In this paper we limit 
ourselves to a study of the non-compact groups U(p, q ) ,  Sp(2n, R )  and SO*(2n, R )  
whose maximal compact subgroups are U(q) x U( p ) ,  U( n) and U( n) respectively. In 
these three cases the generalised characters of an important class of discrete series 
representations take a particularly simple form. These representations are referred to 
as holomorphic discrete series representations. 

The organisation of the paper is such that discrete series representations will be 
identified in § 2 through the specification of their characters on restriction to the 
maximal compact subgroup. In the case of holomorphic discrete series unirreps of 
the three families of groups under consideration it is shown in § 3 that these characters 
may be very succinctly expressed in terms of Schur functions. These are themselves 
characters of unirreps of the compact unitary groups. 

Harmonic series representations of Sp(2n, R )  are introduced in § 4, in which the 
emphasis is placed on the analogy with spin representations of O(2n). The link between 
harmonic series representations and holomorphic unirreps is made in 99 5 and 6 through 
the derivation of Sp(2n, R )  =I U( n) and U( p,  q )  2 U(q) x U(p) branching rules. 

The paper closes with two sections concerned with the analysis of tensor products 
of holomorphic and harmonic series representations. The groups Sp(2n, R )  and U( p ,  q )  
are discussed in detail. Two rather remarkable conjectures are made, giving closed 
formulae covering all tensor products considered here. These formulae provide straight- 
forward algorithms involving only Schur function manipulations and modification 
rules. 

2. Root systems and discrete series characters 

Let G be a connected reductive non-compact Lie group, K a maximal reductive compact 
Lie subgroup, and H a Cartan subgroup of G which is contained in K. Corresponding 
to G, K and H there exist real Lie algebras g, k and h along with their complexifications, 
gc, kC and hC. The Cartan-Weyl canonical form of gc with respect to hC defines a set 
Z of roots r of gc. A root r in Z is said to be compact if it is a root of kC and 
non-compact otherwise. Thus Z decomposes into the disjoint union of Z" and E", the 
sets of compact and non-compact roots, respectively. 
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In what follows a crucial role is played by the Weyl group W of the compact group 
K. This is the group generated by reflections in the hyperplanes perpendicular to each 
of the compact roots r in Z'. 

It is convenient to adopt once and for all some particular ordering of the compact 
roots r in Z' which serves to define the subset nc of positive roots. In contrast to this 
a variety of orderings of the non-compact roots r in Z" are required in different 
circumstances. In each case the subset of positive roots is denoted by nn. Further we 
introduce 

p ' = t  r, p " = ;  r 
r.nc ren" 

and 
p = pc+ p". 

A vector A is said to be K dominant if (r, A )  > 0 for all r in the set of positive roots 
n' of K. Equivalently A 2 SA for all elements S of the Weyl group W of K. 

There exist two lattices of interest: one A, which can be written as integral linear 
combinations of the roots r in Z, and a second A displaced from the first by p. It 
should be stressed that A is independent of the particular ordering adopted in distin- 
guishing between positive and negative roots. 

A vector A in A is said to be non-singular if (r, A )  # 0 for all r in Z, 
With these conventions there exists for each non-singular A in A a unique tempered 

invariant eigendistribution OA which serves as a generalised character of a discrete 
series unirrep of G (Harish-Chandra 1966, Schmid 1975, Atiyah and Schmid 1977). 
On restriction to the compact subgroup K this character takes the form 

OA (4) = (( - 1 I q  vs exp iSA + [exp(;ir 0 +) - exp( -;ir - +)] ) -' (2.2) 
S E  w 

(r ,Al>O 

where + is an appropriate sequence &,. . . ) of real class parameters of K and 
q =;(dim gc - dim kC) is the number of non-compact roots for which (r, A )  > 0. The 
summation is carried out over all elements S of the Weyl group W of K and vs is the 
parity (*1 )  of S. 

Every OA arises as the character of a discrete series unirrep provided that A is 
non-singular, whilst conversely every discrete series character occurs amongst the set 
of such OA (Harish-Chandra 1966, Schmid 1975, Atiyah and Schmid 1977). Hence all 
the discrete series unirreps may be specified, up to equivalence, by means of those A 
in A which are non-singular and K-dominant. The latter restriction is convenient since 
vectors A related by the action of Weyl group elements yield the same character (2.2). 

Hence 

( r . A ) > O  

For the K dominant vector A the ordering of the non-compact roots is such that the 
set of positive roots is de$ned by 

n n = ( r G Z n :  (r,A)>O}. (2.4) 
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It then follows from Weyl's character formula for unirreps of the compact Lie 
group K that 

where x A - - p c (  4)  is the character of the unirrep of K with highest weight vector A - pc. 
The fact that A is non-singular and K dominant ensures that A - p c  is a well defined 
highest weight vector. 

It has been shown (Schmid 1975, Hecht and Schmid 1975) that for all non-singular 
A, e,(+) may be expressed in the form 

where the branching rule coefficients Bf for the restriction from non-compact G to 
compact K may be determined through the use of Blattner's conjecture. It is our 
intention to show that for certain A the complexities of the corresponding formula 
(Hecht and Schmid 1975) 

may be avoided. In this formula as in (2.6), p is K dominant whilst Q ( v )  is the 
number of distinct ways in which v can be expressed as a sum of positive non-compact 
roots (2.4). It should be pointed out that as a consequence of (2.7) the leading term 
in (2.6) corresponds to p = A - p c + p "  and has multiplicity one, whilst the remaining 
terms involve p = A -p '+p" - Y where Y is a positive combination of non-compact 
roots. 

Thus the discrete series unirrep A of G could equally well have been labelled by 
p = A - pc + p" which is the highest weight of the leading unirrep of K contained in 
the restriction of A from G to K. In this sense p is the analogue for G of a highest 
weight label. 

3. Holomorphic discrete series representations and Schur functions 

The difficulty in exploiting (2.5) directly lies in the facts that p" depends upon the 
ordering induced by A through the definition (2.4), and that in general p" is not 
invariant under the action of elements S of the Weyl group W. 

In certain cases these difficulties may be overcome rather neatly. To illustrate this, 
consider the non-compact groups U(p, q ) ,  Sp(2n, R )  and SO*(2n) whose maximal 
compact subgroups are U(q) xU(p) ,  U(n) and U(n)  respectively. Since the Weyl 
group of U( n )  is the symmetric group, S, ,  of all permutations of components of vectors 
in the root space, the appropriate Weyl groups are S, x S,, S ,  and S ,  respectively. The 
corresponding root systems are specified in table 1 in terms of mutually orthogonal 
unit vectors e, and d, for appropriate values of i and a. 

The usual lexicographic ordering of vectors in the root space of the maximal 
compact subgroup K then fixes the positive compact roots nC as given in table 1. 
Correspondingly 
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Table 1. Root systems 

G K I' (compact) P" (non-compact) IIc (positive compact) 

' 2  ""> n - 1  n - 3  
Sp(2n, R )  pc= (- - 

2 ' 2 ' * ' .  

n - 1  n - 3  
SO*(2n) pc= 

2 ' . . "  2 

(3. lb)  

( 3 . 1 ~ )  

In contrast p" depends upon A through (2.4). In the case of U( p, q )  for example 
there are precisely ( p +  q)!/p! q !  distinct types (Graev 1968) of non-singular K 
dominant vectors A each specified by a permutation II for which 

An, > An, > . . . > Anp++,, 

subject to the constraints 

A i  > A 2  > . . . > hp and A p + l >  A p + 2 > .  . .> A p + q  

corresponding to the K dominant condition. Each such type specifies a type of discrete 
series unirrep. 

It is convenient to concentrate attention on holomorphic discrete series unirreps 
(Harish-Chandra 1956). A discrete series unirrep A is said to be holomorphic (or 
antiholomorphic) if and only if (Schmid 1975) for each pair of non-compact roots, r, 
and rp, in II" r, + rp is not a positive compact root i.e. 

r, + rp & IIc. 

The dependence upon A is implicit in the use of (2.4) to define II". 
By considering the identities 

e, -e, = (e, - d , ) + ( d ,  -e,) 

d, - db = ( d ,  - e,) + (e, - d b )  

e, - e, = (e,  + e k )  + ( -ek - e,) 

for i < j  

for a < b 

for i < j 
it is then easy to see that the only possible sets of positive non-compact roots are given 

U( P, 4 )  I I " = { e , - d , :  l s i c p ,  l s u s q }  ( 3 . 2 ~ )  

Sp(2n, R )  (3.2b) 

SO*(2n) II"=(e,+e,: I s i < j s n }  ( 3 . 2 ~ )  

and their complementary sets in X", namely II'" = X"\II" with II" specified as above. 

by 

II" = {e, + e, : 1 6 i s j s n} 

The restrictions on the components of A then take the form 

U(P, 4 )  A , > A , > .  . . > A p > A p + l > .  . . > A p + 4  (3.3u) 
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(3.3b) 

(3.3c) 

for II" as given in (3.2) whilst for the complementary cases 

U(P, 4 )  (3.3 a') 

Sp(2n, R )  O >  A ,  > A , > .  . . > A ,  (3.3 b') 

Ap+l > A p + z > .  . .> A p + q  > A i  > A*. . .> hp 

SO*(2n) 0 3 - I A 1 1 > A 2 >  ... >A, .  (3.3c') 

These cases correspond to holomorphic discrete series unirreps which are con- 
tragredient to those specified by (3.3). The terminology in the literature is somewhat 
confused but the unirreps of (3.3) and (3.3') are said to constitute the positive and 
negative discrete series, D, and D- respectively. The unirreps (3.3) of D, have a 
lowest weight with respect to the ordering of weights appropriate to the maximal 
compact subgroup, whilst the unirreps (3.3') of D- have correspondingly a highest 
weight. Both sets of unirreps are holomorphic but it is customary (Sternberg and Wolf 
1978, Repka 1979) to refer to those of D, as antiholomorphic and those of D- as 
holomorphic. The convention will nor be adhered to here. Attention will be restricted 
from now on to the discrete series unirreps specified by (3.3) which will be referred 
to as holomorphic discrete series unirreps. 

For these representations the non-compact analogues of (3.1) then become 

U(P7 4 )  .n=(;,; , . . . ,  ;,-;,-; , . . . )  -;) 
n + l  n + l  

Sp(2", R )  p"= 
2 2 2 

n - 1  n - 1  
SO*(2n) p n =  

2 ' 2 ' . . *  

(3.4u) 

(3.4b) 

(3.4c) 

These vectors are remarkable for the fact that they are invariant under the action 
of the elements S of the Weyl group W allowing (2.5) to be simplified to 

Moreover the final term in this expression takes the form 

n JJ (1 - e'4j U(P, 4 )  

n (1 -ei4i ei4,)-l Sp(2n, R )  

SO*(2n) n (1 - eid; ei+,)-I  

l s j s p  l s a r q  

l s i s j s n  

l s i < j s n  

( 3 . 6 ~ )  

(3.6b) 

( 3 . 6 ~ )  

These terms (3.6) are nothing other than rather well known generating functions for 
specific infinite series of characters of unitary groups as given by Littlewood (1940, p 
238). The only slight complication being the presence of a negative sign in the exponent 
in (3.60): this invokes complex conjugate characters. 
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Thus ( 3 . 6 ~ )  is just the generating function for the infinite series of Schur functions 
( S  functions) 

(3.7a) 

where the summation is over all partitions (L), (3.6b) that for the infinite S function 
series 

D = C { S )  (3.76) 

where the summation is over all partitions ( 8 )  whose parts are even, and ( 3 . 6 ~ )  that 
for the infinite S function series 

(3.7c) 

where the summation is over all partitions ( p )  whose parts are repeated an even number 
of times. The notation and properties of the various infinite series of S functions have 
been explained fully elsewhere (King 1975, King et a1 1981, Black et al 1983). 

U(P, 4 )  A - p C + p n = ~ - ~ = ( ~ 1 , ~ 2  , . . . ,  K p , - v q  , . . . ,  - v 2 , - - v 1 )  ( 3 . 8 ~ )  

Writing 

(3.8b) 

( 3 . 8 ~ )  

the holomorphic discrete series unirreps may be labelled by using the partitions K,  v 
and p as follows 

WP,  4 )  { { P i  .I> with K~ 3 ~ ~ 3 . .  .3 K~ v1 3 v23.. .Z  vq and 

Kp -k V q  3 p + 4 (3.9a) 

Sp(2n, R )  ( { C L } )  with p ,  3 p 2 2 . .  .3 p, > n (3.96) 

SO*( 2 n ) [ b l l  

where the double brackets have been used to emphasise that these representations of 
non-compact groups G are being labelled by the highest weights of representations of 
the corresponding maximal compact subgroups K. 

The corresponding characters take the form 

with F~ 3 p 2 3 . .  . 3 p n - ,  3 lpn - n +  l l + ( n  - l ) ,  
(3.9c) 

{ { P i  K l l  2 x ~ ( ~ ) x C ( $ ) x ( ( e ) x d $ )  ( 3 . 1 0 ~ )  
5s F 

with + = (6, J I )  

e,(+)= c x,(+)xs(+) (3.10b) 
S E D  

({Fu)) 

where in ( 3 . 1 0 ~ )  the infinite S function series 

F = C { 5 )  
5 

involves a summation over all partitions 6. 

(3.11) 
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It should further be stressed that these characters automatically give the branching 
rules appropriate for the restriction from the non-compact group G to the maximal 
compact subgroup K. Taking note of the fact that x,( 4)  is the character of the unirrep 
{ p }  of the unitary group U(n) ,  and similarly for the other factors appearing in (3.10), 
these branching rules can be seen to take the form 

( 3 . 1 2 ~ )  

The result ( 3 . 1 2 ~ )  has been given implicitly in a determinantal form by Graev (1968). 
The other expressions are, however, new and all three are surprisingly simple. 

4. Harmonic series representations 

Just as there exists a spin representation A of the orthogonal group SO(2n) associated 
with a Clifford algebra, so there also exists a harmonic representation, d, of the 
non-compact symplectic group Sp(2n, R )  associated with a Heisenberg algebra. 
Moreover A is a true, unitary, finite dimensional representation of the double covering 
group Spin(2n) of S0(2n),  whilst A is a true, unitary, infinite dimensionai representation 
of thc double covering group Mp(2n) of Sp(2n, R ) ,  the so-called metaplectic group. 

The representation A is reducible into the sum of two irreducible representations, 
A+ and A-, of SO(2n) whose highest weights are (4 f . . . f 1) and (i f . . . i-f), correspond- 
ing to highest weights of the representations E 1 i 2 { O }  and E”’{i} of U(n) which appear 
in their restriction to this maximal subgroup. 

In a vLry similar way the representation d is reducible into the sum of two irreducible 
representations 6, and d- of Sp(2n, R )  whose leading weights are ( 4 4 . .  . t )  and 
(3 3 .  . . 9) (Moshinsky and Quesne 1971), corresponding to the highest weights of the 
representations E1i2{O} and ~”’{l} of U ( n )  which appear in their restriction to this 
maximal compact subgroup. 

Continuing the analogy, the tensor powers A k  decompose into direct sums of unitary 
irreducible representations of SO(2n) (or more properly of Spin(2n) if k is odd). 
Indeed all such finite dimensional unirreps appear as a constituent of Ak for some k. 
Similarly the tensor powers bk all decompose into a direct sum of unirreps of Sp(2n, R )  
(or more properly of Mp(2n) if k is odd). We shall refer to all those infinite dimensional 
unirreps which appear as a constituent of bk for some k, as harmonic series representa- 
tions. 

In order to keep track of the origin of a harmonic series representation it has been 
found useful to label 6 ,  and A- by the symbols (i(0)) and (i(1)) respectively, whilst 
all those unirreps appearing in bk are labelled by the symbols (fk(A)). 

The justification for this notation lies in the fact that under the restriction from 
Sp(2n, R )  to U(n)  

3 1  

A, = ( i ( O ) ) +  E1’*({0} +{2} + (4) +. . . ) ( 4 . 1 ~ )  

d-=(f( l ) )+~~’~({1}+{3}+{5}+ . . . )  (4.lb) 
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and more generally 

( ik(A))+&'/ ' (xR~{p})  =&'"({A}+. .  . )  
CL 

(4.2) 

where the terms indicated by .  . . all have higher highest weights than the representation 
{A}. Moreover the harmonic series representations appearing in bk are in one-to-one 
correspondence with the terms arising in the branching rule appropriate to the restric- 
tion from Sp(2nk, R )  to Sp(2n, R )  xO(k) 

a + x  (%(A)) X [ A I  (4.3) 
5 

where the summation is carried out over all those partitions ( A )  = ( A l ,  A2, . . . ) for 
which the conjugate partition (1) = (I,, x2, . . . ) satisfies the constraints 

X , + X 2 s  k (4.4a) 

and 

x, s rl. (4.4b) 

This result (4.3) was first given by Kashiwara and Vergne (1978) and the constraints 
(4.4), which were proved to cover all unirreps of Sp(2n, R )  having a lowest U(n) 
weight by Rowe et a1 (1985), imply that the summation is over precisely those 
representation labels of O(k) which are standard (Hamermesh 1962, p 394) and which 
also label irreducible covariant tensor representations of U( n) .  

For the interested reader it might be pointed out that (4 . la)  and (4.1 b)  are analogues 
of the SO(2n) to U(n) branching rules 

&'~'({0}+{12}+. . .+{1"}) n even 
n odd 

&-ll2({1} + { 13} + . . . + { in-1}) 
& - y { O }  + { 12) + . . . + { 1 " - I } )  

A + - {  P I 2 ( {  1) + {i3} +. . . + { 1")) 

n even 
n odd 

whilst the analogue of (4.3) is the branching rule for the restriction from SO(2nk) to 
SO(2n) xSO(k) which can be written in the form 

with the representation of SO(2n) signified here by [tk(A)] recast in the standard 
labelling format through the identification 

i f k = 2 m  
if k = 2m + 1 .  (4.8) 

The summation in (4.7) is carried out over all those partitions ( A )  for which the 
conjugate partition (x) satisfies the constraints 

i , s k  (4.9a) 

and 

A I S n .  (4.9b) 



3122 R C King and B G Wybourne 

This rule (4.7), established first by Morris (1958), involves certain representations of 
SO(2n) and SO(2k) which are reducible namely those of SO(2n) arising when A ,  = n 
and those of SO(2k) arising when A l  < n and those of SO(2k)  arising when A, = k. 

One important distinction between the non-compact and compact cases lies in the 
fact that (4.1) to (4.3) involve infinite series whilst (4.5) to (4.7) give finite series. 

5. The Sp(Zn, R )  + U(n) branching rule 

In order to understand the true nature ofthe unirreps ( $ k ( A ) )  of Sp(2n, R )  it is necessary 
to determine explicitly the branching rule (4.3) appropriate to the restriction from 
Sp(2n, R )  to U(n)  and thereby evaluate the corresponding group character on the 
conjugacy classes of U(n).  This has been carried out (Rowe et a1 1985) through a 
consideration of the group-subgroup chains 

(5.1) Sp(2nk, R )  2 Sp(2n, R )  x O ( k )  > U ( n )  x O ( k )  
and 

Sp(2nk R ) 2 U ( n k ) ~ U ( n ) x U ( k ) 2 U ( n ) x O ( k ) .  

Consideration of the first gives, from (4.3) and (4.2), 

i + C ( ; k ( A ) ) x [ A ] + E C  E ” ’ R ~ ( ~ } X [ A ]  
A A P  

whilst the second yields 

i+c&1/2.  [ 1 ” } + ~ E ~ ” p } X & ~ ~ ” { p )  
m P 

+ ~ & k ’ 2 * { p } X [ p ” & k ’ ’ { ~ ~  D}x[ l ] .  
P P 

(5.2 

(5.3 

(5.4) 

In (5.3) the summation involves a single term associated with each linearly indepen- 
dent character [ A ]  of O ( k )  specified unambiguously by a standard label ( A ) .  Unfortu- 
nately the manipulations of (5.4) involve, in general, non-standard labels [5] for which 
modification rules (King 1971, 1975, Black et al 1983) must be applied. The net result 
for the restriction Sp(2n, R )  + U(n) takes the form 

( i k ( A ) ) +  E ~ ”  * { A , } k *  D (5.5) 

where { A , } k  is a signed sequence (Rowe et a1 1985) of terms * { p )  such that * [ p ]  is 
equivalent to [ A ]  under the modification rules of O ( k ) .  

For example 

{ 54,)4 = { 54) - { 542) + { 543 l}  - { 543’) - { 54212) + . . . . 
It is to be noted however that in (5.5) the products signified by . are tensor products 
to be carried out in the group U( n ) .  This imposes its own limits on the terms appearing 
in each of the infinite sequences { A , } k  and D. In fact the former is rendered finite 
although the latter remains infinite. For example 

{ 54,): = { 54) - { 542) 

where the subscript n on {As}: indicates that only partitions with n or fewer parts are 
to be retained. Similarly we write D, to signify a similar constraint on D. For example 

D, = { 0} + {2) + { 4) + { 2’) + { 6) + (42) + { 8) + { 62) + { 4’) + { 10) + . . . . 
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Of course as is implicit in (5.4) the value of k also places limits on the number 
of parts of the partitions p and 5 and on the relevant terms of D. Thus (5 .5 )  can be 
replaced by 

(5.6) 

with N = min( n, k ) .  The first indicates a product in U( n) and the second * a product 
in U ( N )  as implied by the final subscript N. This result has been derived and 
exemplified elsewhere (Rowe et a1 1985). 

The modification rules of O ( k )  (King 1971, 1975, Black et a1 1983) imply that the 
signed sequence 

( % ( A ) ) +  Ek” ‘ {{As)k * D N ) N  

= { A )  - { P . ) + { V )  * {PI +. . * (5.7) 
is such that 

il  < /I1 < i, S . . . . 
Moreover 

{k+1-X, ,Xl+1,X3, i ,  , . . .  } if X, s [ k/2] 
if X I  > [k/2] (5.8) {/I)={{ k + l - i 2 , k + t - i , , i 3 , i ,  ,... } 

so that /I1 = k +  1 - 1’. It follows that the branching formula (5.6) for the restriction 
from Sp(2n, R )  to U ( n )  takes the very simple form 

( i k ( A ) ) +  E ~ ”  { A }  * D (5.9) 

if and only if 

X I  s n S k - i 2  (5.10) 

where it should be stressed that the products on the right-hand side of (5.9) are now 
to be evaluated in U( n ) ,  since N = min( n, k )  = n. 

Just as the harmonic series unirrep ( j k ( h ) )  of Sp(2n, R )  is said to be standard if 
(4.4a) and (4.4b) are satisfied, it is convenient to say that it is highZy standard if and 
only if the stronger condition (5.10) is satisfied. Thus for example (2(32)) is standard 
but not highly standard for Sp(6, R ) .  Correspondingly 

{32,)~={32)-{322} 

and the restriction from Sp(6, R )  to U(3) takes the form 

(2(32))+ E’ * ((32)-{32‘)) * D 

= E’ * ({ 32) + (33 1) + (421) + (43) + { 432) + (441) + . 
= (542)+{553)+(643)+{652)+(654)+{663)+. . . . ( 5 . 1 1 )  

In contrast to this (2(32)) is standard and highly standard for Sp(4, R ) .  In this case 

(32,): = (321 
and the restriction from Sp(4, R )  to U(2) yields 

(2(32))+ E’ * (32) * D 

= E’ * ({32}+{43)+{52}+{54)+{63)+{65)+. . . 
= (54) + (65) + (74) + (76) + (85) + (87) + . . . , (5.12) 
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Incidentally, whether or not ( f k ( A ) )  is highly standard for Sp(2n, R )  the coefficients 
Rf appearing in (5.3) can be seen on comparison with (5.4) to be identical with those 
appearing in the branching rule from U( k )  to O( k )  

(5.13) 

This may be used to check individual coefficients in such results as (5.11) and (5.12). 
At first sight this looks an extremely helpful result but the problem of modification 
rules has simply been transferred elsewhere. Now, in evaluating (5.13), modification 
rules must be used to express the result in terms of O ( k )  standard labels [A] .  However 
the result does not readily give the required expressim 

(5.14) 

for the Sp(2n, R )  restriction to U(n) since the summation in (5.13) is over A rather 
than g as in (5.14). 

Since unirreps of Sp(2n, R )  yielding the same character on restriction to U(n)  are 
necessarily equivalent, the real importance of (5.9) is that it implies the equivalence 
of certain harmonic series unirreps ( $ k ( A ) )  of Sp(2n, R )  for various k and ( A ) .  These 
equivalences can be seen by noting that (5.9) gives 

( 5 . 1 5 ~ )  
(5.15 b) 

with 

( P ) = ( C L ~ , C L I , . . . , P , ) = ( ~ ~ + ~ , A ~ + ~ , . . . , A , + ~ ) .  (5.16) 

Thus for example, in the case of Sp(4, R )  we have the equivalent representations 

(4(10)) = (3(21)) = (2(32)) (5.17) 

all branching to the U(2) representations 

* { 1) * D = (54) D 

= {54}+{65}+ {74}+{76}+{85} + {87}+. . . . (5.18) 

It is to be noted that (5.17) cannot be extended to include (l(43)) since this violates 
(5.10). Indeed it violates (4.4) and the representation (l(43)) is not standard. 

A further example is provided by the equivalence 

(W)) =(%w) (5.19) 

in Sp(6, R) ,  with both representations branching to 

E9/* . { 12) * D = & I / *  a (554) * D 

= ~ ~ / ~ ( { 5 5 4 } + { 7 5 4 } + { 6 5 5 } + .  . . (5.20) 

in U(3). Again (5.19) may not be extended to include (g(332)) which is inadmissible 
by virtue of (4.4). 

The final point to note is that comparison with the discussion of hoiomorphic 
discrete series unirreps of Sp(2n, R )  given in 03 indicates that such unirreps are all 
equivalent to harmonic series unirreps. This can be seen by comparing (3.12b) with 
(5.9). 
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First of all each holomorphic discrete series unirrep ( { p } )  necessarily has p, > n 
and therefore coincides with the highly standard harmonic series unirrep ($k(  A ) )  where 

( { C L } )  = ( ( ~ 1 ~ 2  . . p n ) )  

(5.21) 

sothat k = 2p, andX,S n - 1 < n < p n  <2pn  - p ,  = k - p ,  < k-  n < k-XZinagreement 
with (5.10). 

Conversely if k is even, say 2m, and A, > n - m then the harmonic series unirreps 
( $ k ( A ) )  is equivalent to a holomorphic discrete series unirrep ( { p } )  through the identifi- 
cation 

( % ( A ) )  = M A ) )  

= ({A,+  m, A 2 + m , .  . . , A,+ m } )  

= ( { P I )  

with p, = A, + m > n as required. 
The set of harmonic series unirreps ( i k ( A ) )  thus contains the set of holomorphic 

discrete series unirreps ({ p } )  along with others, with $k half-odd integral, associated 
with the metaplectic covering group Mp(2n, R )  of Sp(2n, R )  and still others with 
X I  + X, 6 k < X, + n and integer k which correspond to limits of discrete series unirreps 
or mock-discrete unirreps or ladder unirreps. 

6. The U(p, q )  + U(q) x U(p) branching rule 

Turning to the non-compact groups U( p ,  q )  these may be embedded in Sp(2p + 2q, R )  
whose harmonic representation i\ decomposes in accordance with the rule 

m 

L H = H o +  2 ( H , + H - , )  
m= I 

where in what follows it is convenient to write 

H,={1(8;0)} ( 6 . 2 ~ )  

H,,, ={l(b;  m ) }  m = 1,2, . . . (6.26) 

H-,={l(r%;O)} m = l , 2  , . . . .  ( 6 . 2 ~ )  

The unirrep H plays for U( p ,  q )  the same role as d for Sp(2n, R ) ,  whilst the unirreps 
H ,  are analogues of b, and b-. The branching rule for the restriction of these 
fundamental harmonic series unirreps of U( p, q )  to the maximal compact subgroup 
U( q )  x U( p) take the form 

H, = { i(b;  o)} -+ (0 x &)  ({o} x {o} + {I} x { I} + {Z} x (2) + . . . ) ( 6 . 3 ~ )  

H,,, ={I@; m)}+(O X E )  ((0) x{m}+{i} x{m+l}+{Z} x{m+2}+. . . ) (6.3b) 

H ~ m = { l ( ~ ; O ) } + ( O x & )  * ( { m } x { U } + { m } x { l } + { m } x { 2 } + .  . , ) .  ( 6 . 3 ~ )  

Just as for Spt2n, R )  the harmonic series unirreps ( f k ( A ) )  are generated by consider- 
ing the powers Ak of & so the harmonic series unirreps { k ( C ;  p ) }  of U(p, q )  are 
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generated 
the case k 
from U(p, 

by considering the powers Hk of H. The justification for the notation in 
= 1 is provided by the above branching rules. More generally on restriction 

, I ] )  to U( q )  x U( p )  we have 

{ k ( F ;  p ) }  + (0 x E ~ )  * c Rdi,"{?} x{a}=(O X E ~ )  . ( {F}  X{p}+. . . ). 
U. 7 

(6.4) 

Thanks to the work of Kashiwara and Vergne (1978) these harmonic series unirreps 
may be studied by noting that on the restriction from U( pk, q k )  to U( p ,  q )  x U( k )  

where the summation is carried out over all those pairs of partitions ( p ) =  
( p l ,  p2 , .  . . , pp) ,  ( v )  = ( vl, vz, . . . , v,) for which the conjugate partitions ( k )  and (v') 
satisfy the constraints 

cl + s k (6.6a) 

and 

G l S P  and v1 s q. (6.66) 

This result was established by Kashiwara and Vergne (1978) and the constraints 
imply that the summation is carried out over just those mixed tensor representation 
labels of U(k)  which are standard (King 1970, 1975) and which also label irreducible 
contravarient and covariant tensor representations of U( q )  and U( p )  respectively. 

Following the pattern of § 5 a consideration of the chains 

qk)=U(p,  q ) x U ( k ) = U ( q ) x U ( p )  x U ( k )  (6.7) 
and 

U W ,  4 k ) = U ( q k ) x U ( p k ) = U ( q ) x U ( k ) x U ( p )  x U ( k )  

= U(q) XU(P) xU(k)  (6.8) 

(6.9) 

gives for the first 

H-, { k ( F ;  p)}x{F;  p}- ,  c ( O X E k  X O )  * R;;,"({?}X{a} x{5;  p } )  
U, P v. P 

-9 r 

whilst the second yields 

H-, c (OxE)~{?ii}X{n} 
m, n 

-, c (0 x 0 x x E , 1 * ({a x <a x { 77 1 x { 77)) 

+ c  ( O x E k X & 4 ) . ( { 5 7 X { 7 7 } X ( { ~ } . { 7 7 } ) )  

5. R 

5. R 

(6.10) 

Unfortunately the techniques used for deriving (6.10) involve the possibility of 
non-standard labels { E  77) of U(k) arising. These have to be modified in order to 
recast the result in terms of those standard labels { F; p }  of U( k )  appearing in (6.9). 



Non-compact Lie groups 3127 

As a result the restriction from U( p ,  q )  to U( q )  x U( p )  yields the branching rule 

{ k(  fi; p 11 + c (0 x E k ,  { fis; CL,) * {Cl x {l}  (6.11) 

where {C,; ps}k is a signed sequence of terms * {e }  X{T} such that * { e ;  T} is equivalent 
to { F ;  p }  under the modification rules of U(k).  

5 

For example 

{ 5,  ; 1 s}2 = { 5 )  x { 1) - {3i} x { 1 2} + (52) x { 1 3} + . . . . 
Again this may be rendered finite in (6.11) through the imposition of constraints 
imposed by specific values of p and q. For example 

{5& 1,}:,2={5} X{1}-{3i}X{l2} 

where the subscripts q and p on ( Cs; p , } i , p  limit the number of parts of the partitions 
U and T,  respectively, labelling terms * {a }  X { T }  in the signed sequence. The number 
of parts of the partition (5) appearing in (6.11) are also constrained by both q and p ,  
as are the terms in the tensor products evaluated for U(q) and U( p ) .  

The generalisation of (5.6) appropriate to the restriction from U(p, q )  to U(q) x 
U ( p )  then takes the form 

(6.12) { k ( C ;  p ) } + c  ( O x & k )  ’ { i C s ;  p s > b . P  ’ ({f}Q x{S}P))Q,P 
5 

with P = min( p, k )  and Q = min( q, k ) .  
The modification rules under U(k) (King 1975, Black et a1 1983) imply that 

{ C,; = { C} X { p }  - {?} X{(T} * { K }  X { h } .  . . 
with 

/ I 1  < 6, < x,  s . . . 
i, < F1s ;, s * . . . 

Moreover 

{ F }  = { k + 1 - b,, i;2, i;3,  . . . } and (61 = { k  + 1 - C l 9  cz2, c z 3 ,  

It then follows that the branching rule (6.12) reduces to 

CL)} + c (0 x E k ,  * ((4 x { P I )  ‘ ({a x (51) 
5 

=cm ‘ m & k * { p ) ’ { 5 )  

if and only if both conditions 
.. 

l-tlGP and VI s 4 

are satisfied, along with at least one of the conditions 

p s k - ; ,  and q S k - 6 ,  

. . .  

(6.13) 

}. (6.14) 

(6.15) 

( 6 . 1 6 ~ )  

(6.166) 

where the products in (6.15) to the left and right of the x are tensor products to be 
evaluated in U( q )  and U (  p )  respectively, since P = min( p, k )  = p and Q = min( q, k )  = q. 
Representations satisfying (6.16) are said to be highly standard since (6.16) is a stronger 
constraint than (6.6). 
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Once again whether or not { k( I ;  p ) }  is highly standard for U( p ,  q )  the coefficients 
appearing in (6.9) can, on comparison with (6.10), be seen to be identical with those 
appearing in the branching rule from U( k )  x U( k )  to U( k )  

(6.17) 

where of course it may be necessary to use the modification rules in U( k )  to evaluate 
the right-hand side. Whilst useful for checking results, this does not give the required 
branching from U( p ,  q )  to U( q )  x U( p )  

{ k( I ; p )} + RliZ(0 x E k, . { T }  x {a}. 
7, CJ 

(6.18) 

Returning to the case (6.15) covered by the constraint (6.16) it is clear that once 
more there exist equivalences between highly standard harmonic series unirrep 
{ k ( I ;  , p ) }  for various k, ( v )  and ( p ) .  In fact (6.15) gives 

{ k ( t p L ) } + c { I )  * { l } X { K } .  {l}  (6.19) 
5 

with 

( K )  = ( K ] K ~ .  . . K ~ )  = ( p l +  k, p2-t k , .  . . , p p + k ) .  

For example in the case of U ( 4 , l )  we have the equivalence 

(6.20) 

{6(2; 1)) = { 5 ( 2 ;  213)} (6.21) 

with both branching from U ( 4 , l )  to U( l )  xU(4)  to yield 

(0 x E 6 )  * c 0 1  * {Cl X{l} . {l}  
5 

= (0 x E ~ )  * ({Z} x { l}  + {3} x ((2) + { 12}) + (4) X ((3) + (21)) + . . .) 
= (2) x {763} + {3} x {863} x {j} x {7262} + {Z} x {963} + {q} x {8762} + . . . 
= c (2) * {C} x{763} x { l } .  (6.22) 

Notice that (6.21) cannot be extended to include {4(2;323)} since this leads to a 
violation of (6.16) and indeed of ( 6 . 6 ~ ) .  

i 

The final expression (6.22) indicates on comparison with ( 3 . 1 2 ~ )  that 

{{Z; 763}} = {6(2; 1)). 

More generally a comparison of (6.15) with (3.10a) allows holomorphic discrete series 
unirreps of U( p ,  q )  to be identified with corresponding highly standard harmonic series 
unirreps. To be precise 

with k = K p  and ~ , = K ~ - K ~  P ~ = K ~ - K ~ , . . . , ~ ~ = O  provided that k = K p a p + c l  or 
k = K p  5 q + b l .  
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7. Tensor products of holomorphic discrete series unirreps 

Surprisingly little work seems to have been carried out on the decomposition of tensor 
products of holomorphic discrete series unirreps. However relatively recently the 
general problem has been discussed by Repka (1979) and Gutkin (1979). It is clear 
from the work of Repka that in analysing the tensor products of unirreps from the D, 
series of a non-compact group G a knowledge of the branching to the maximal compact 
subgroup K is all that is required. Indeed in such cases these branchings take the form 

P+CB,"U u + C  B7y~ 
U r 

and the tensor product decomposition for the compact group K gives 

U x T = KP,,p. 
P 

(7.la,  b) 

(7.2) 

Then clearly the tensor product representation p x v of G yields the representations 
of K in accordance with 

(7.3) 

This result enables the tensor product p X U to be decomposed in the case of holomor- 
phic unirreps since these are necessarily labelled by their lowest K dominant weights. 
As pointed out implicitly by Repka (1979) this means that a formal inverse of the 
infinite triangular matrix B exists. One then obtains the formula for tensor products 
of holomorphic unirreps of the non-compact group G: 

(7.4) 

For example in the case of the unirreps ({22}) and ((31)) of Sp(4, R )  we have from 
(5 .15)  

SP(4, R) + U(2) 

({22})+{22} * D ={22}+{42}+{42}+{62}+{64}+{62}+. . . 
((3 1)) + (3 1) 

Thus 

D = (3 1) + {32} + (42) + { 5 1) + 2{ 53) + { 52} + . . . . 
(7.5a) 

(7.56) 

({2*}) x ((3 1)) + ({ 22} + (42) + (62) + {42) + . . . ) ({ 3 1) + { 5 1) + (42) + {32} + (7 1) + . . . ) 
= {53}+2{52}+2{64}+{62}+2{73}+7{75}+6{72}+. . . . (7.6) 

But 

((53)) + (53) * D = (53) + { 52} + (64) + (73) + 2{75} + {72} + . . . 
({52})+{52} D={52}+{75}+{72}+.  . . 

({73})+{73} * D={73}+{75}+{72}+.  . . 
({64})+{64} D={64}+{62}+{75}+.  . . 
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({75})+{75}. D={75}+{72}+. . . 
({72})+{72}. D = { 7 2 } + . . . .  

Hence it can be seen that the Sp(4, R )  tensor product decomposes in accordance 
with the formula 

({22})({311) = ((531) + ({52}) + ((64)) + ({73})+ 2({75}) + ({72}) + . . . . (7.7) 

However this result can be obtained much more readily by noting that for such 
holomorphic discrete series unirreps 

This leads directly to the result 

( { P I )  x (1 V I )  = ( { P  * v * D } )  (7.10) 

where in (7.8)-(7.10) the symbol - means the tensor product appropriate to the group 
U(n). All terms labelled by partitions involving more than n parts are discarded. 

By using precisely the same argument it follows from (6.19) that tensor products 
of holomorphic discrete series of unirreps of U(p, q )  may be decomposed into a sum 
of unirreps through the use of the formula 

(7.11) 

where the products to the left and right of ; are evaluated in the groups U(q) and 
U( p )  respectively. 

{{F; p } )  x i {? ;  (.I} = {{F. .T. r; p * (r* ll} 
i 

Similarly for SO*(2n) 

[{CL11 x [{.>I = [ { C L  ' v * B}l (7.12) 

with the products evaluated in U(n )  on the right-hand side. 
The justification for these extremely simple results (7.10)-(7.12) lies in the fact that 

the tensor products of holomorphic discrete series unirreps associated with the D, 
series can always be decomposed into a direct sum of holomorphic discrete series 
unirreps also from D,. To see this it is merely necessary to note that the conditions 
(3.9a), (3.9b) and ( 3 . 9 ~ )  are automatically satisfied by each term in the right-hand 
side of (7.10), (7.11) and (7.12) respectively. 

For example in (7.10), by definition p , > n  and v,>n so that every term { A }  
appearing in { p }  * { v} . D evaluated in U( n) necessarily has A, > 2n > n as required. 

These results (7.10), (7.11) and (7.12) are the realisation in terms of Schur functions 
of the general formula appropriate to tensor products of holomorphic discrete series 
unirreps derived by Gutkin (1979). Casting it in terms of Schur functions allows tensor 
products to be evaluated very rapidly by making use of the Littlewood-Richardson 
rule (Littlewood 1940, p 94) either by hand or better still by making use of a computer 
program such as SCHUR (Black 1983). 

The results for the holomorphic discrete series unirreps apply to those members 
of the harmonic series unirreps which are highly standard in the sense of (5.10). Thus 
in the case of Sp(2n, R )  we have 

(tk(PL)) x ( f V v ) ) =  ( t ( k +  N { P .  Dl) (7.13) 
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provided that 

c 1 s n s k - k 2  and C , s n s l - C 2 .  

For example in the case of Sp(4, R )  

(1(12)) X(l(2)) = ( a i l 2 )  ' (21 ' D ) )  

=(2({1*} * (2) * ({0)+{2)+{22)+{4)+{6}+. . . )) 
= (2( { 3 1) + { 32) + (42) + { 5 1) + 2{ 53) + { 5 2 )  + . . . . (7.15) 

This is in accord, as it must be, with (7.7). 
It should be noted that in this example as in all others the cut-off with respect to 

n in { p }  {v) D along with the constraints (7.14) ensure that each term { p }  in the 
product is automatically highly standard. To see this note that 

n 2 p1 2 p 2 > .  , . 
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(7.14) 

so that 

n s ; ,  and p ' , + ~ 2 ~ 2 n ~ k - ~ 2 + l - C 2 ~ k + l  

giving 

s n s k + 1 - c2 
as required for a highly standard unirrep. 

Similarly for U(p, q )  

{ k ( ~ ; p ) } ~ { l ( ~ ; u ) ) = ~ { k + l ( ~ ~  b .  f ; p '  U *  l ) }  
i 

provided that 
- - 

CZlsP, v1 4, U1 S P ,  r 1 s q  

and either p s  k-f i l  or q s  k - k ,  and either p s  k - i ,  or qs k-6, .  

(7.16) 

8. Tensor products of harmonic unirreps of Sp(Zn, R )  

The real difficulties in evaluating tensor products of the unirreps considered in this 
paper only occur when dealing with those harmonic series unirreps which are not 
holomorphic discrete series unirreps. 

In considering such unirreps of Sp(2n, R )  for example the difficulty lies in the fact 
that if the highly standard condition (5.10) is violated, then the very simple branching 
rule (5.9) for the restriction to U(n)  must be replaced by the more complicated rule 
(5.6). Thus using 

( t k ( p ) ) =  &k'2{{P51!L * &M)M ( 8 . 1 ~ )  

(fl(pCL))= ~ " ~ { { v J k  9 D N I N  with N = min(n, 1) (8.lb) 

with M = min( n, k) 

gives 

( t k ( p ) )  x ( t l (  v))+ E'"')'' { { {Ps)!b * D M ) M .  { { Y d I N  ' D N M ) N ) n  (8.2) 
which cannot be trivially inverted to give terms (f(k+l)(A))  because of the signed 
sequences that appear in this expression and the complicated dependence on the 
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relative values of n, k and 1. However the inversion may be carried out step by step 
using the fact that the harmonic series unirreps are labelled by the highest weight of 
thtir lowest U( n )  constituent representation. 

For example in the case of Sp(8, R )  branching to U(4) 

(1(1’))+ E{{12s1: ’ 0 2 1 2  

= E{{12} ({o}+{2}+{22}+{4}+. . . )}2 

= ~ ( { 1 ~ } + { 3 1 } + { 3 ~ } + { 5 1 } + { 5 3 } + { 5 ~ } + .  . . ) 
and 

(1(2))+ E{{2s}: * 03, 
= 4({2} - {2*}) a ((01 + (2) + Q2} + (4) + . f 112 

= ~({2}+{31}+{4}+{42}+{51}+{53}+. . . ). 
These give 

(1( 12)) X( l(2)) + ~ ~ ( ( 2 1 ~ )  + (31) + {313} + 2{321} + {32} + {3212} + 2{322} + 
The leading term ~ ~ { 2 1 ~ }  arises from the branching 

(2(212))+ E2{{21f}:: * 0 4 1 4  

= ~ ~ { ( { 2 1 ~ } - { 2 ~ 1 ~ } ) ~ .  ({0}+{2}+{2~}+{4}+. . . )4}4 

= E ~ (  { 2 1 ’} + { 3 1 3} + { 32 1 } + { 32 1 ’} + { 322} + { 33 1 } + . . . ) . 

. . .  

(8.3) 

Subtracting these terms from (8.5) leaves the next leading term ~ ~ ( 3 1 )  associated with 
the branching 

(2(31))+ E2{{3L1:: ’ 04)4 
=~~{({31}-{32~1})4. ({0}+{2}+{22}+{4}+. . . )  

= ~ ~ ( { 3 1 } + { 3 2 1 } + { 3 ~ } + { 3 ~ 2 } + .  . . ). (8.8) 
This may be subtracted and the next leading term (2(412)) identified. 

Painfully one can proceed to the final result 

(1(12)) X(l(2)) 

= (2( 2 1 2)) + (2( 3 1 )) + (2( 41 ’)) + (2( 42)) + (2( 5 1 )) + (2( 53)) 

+(2(612))+(2(62))+(2(64))+. . . . (8.9) 
Clearly the aim should be to circumvent the intricacies and indeed overcounting 

of this particular technique. To this end it is worth considering following a suggestion 
of Rowe (1984) the group-subgroup chains 

Sp(2nk + 2nI, R )  + Sp(2nS R )  x Sp(2n1, R )  

+Sp(2n, R )  xO(k)  xSp(2n, R )  xO(I)  

+ Sp(2n, R )  x O( k )  x O( I) 
and 

Sp(2nk+2nl, R)+Sp(2n, R ) x O ( k + I )  

+Sp(2n, R )  xO(k)  xO(I).  

(8.10) 

(8.11) 
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and 

a + c ( t ( k +  M A ) )  X [ A I  

+ C ( t ( k + ” x  c R?”[PI X [ v l  
I 4  ” 

where the coefficients RY” are the branching rule 
restriction from O( k + I )  to O( k )  x O( I ) ,  i.e. 

[ A I +  c Rf;YPI X [ v l .  
P, U 

The linear independence of the characters [ p ]  x 
on comparison with (8.12) and (8.13), that 

(%(CL)) X ( i W ) = C  R Y ( f ( k + ” )  

(8.12) 

(8.13) 

coefficients appropriate to the 

(8.14) 

v ]  of O( k) x O( I)  then ensures, 

(8.15) 

for tensor products of Sp(2n, R )  harmonic series unirreps, whose coefficients are 
precisely the branching rule coefficients of (8.14). 

This result (8.15) is not unlike that of (5.14) and shares similar disadvantages in 
that the direct evaluation of (8.15) from the use of (6.14) involves a summation over 
A rather than p and v and the derivation of the coefficients in (8.14) involves in general 
the use of modification rules. 

Indeed from the usual Schur function techniques (King 1975) for evaluating these 
branchings one obtains a more explicit statement of (8.13) 

PIX[KI (8.166) 

where in (8.16a), ( A )  is necessarily restricted by the conditions (4.4) which here take 
the form: 

X , < n  and X , + i , S k + I .  (8.17) 

This imposes limitations first on ( p )  and then ( K )  and the allowed terms (6) of D in 
(8.16b). However the terms [p] and [ K ]  must then be modified to give standard labels 
[p]  and [ v ]  of O( k )  and O(I) ,  respectively, with 

; , ~ n  and k 

v, s n and i, + ir, < I 

as appropriate to (8.12). This then accounts for the need to introduce the signed 
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sequences { P , } ~  and {vS}I in ( 8 . 1 6 ~ ) .  The final point to notice is that the restriction 
(8.17) must apply to all the terms ( $ ( k + I ) ( A ) )  of ( 8 . 1 6 ~ ) .  All other terms arising in 
the product { P * . , } ~  { v,}'. D are to be discarded. With this important proviso it then 
follows from (8.13) and ( 8 . 1 6 ~ )  that for tensor products of Sp(2n, R )  

( ~ ~ ( P C L ) )  x(+I(v))=(+(k+ I ) ( ( I p s I k  * { ~ s > ' *  D ) ) k + l . n )  (8.18) 

where ( ( A ) ) k + l , n  is to be interpreted as null unless (4.4) is satisfied i.e. 

(8.19) 

For the product (8.9) this formula gives in the case of Sp(8, R )  the result 

( 1 ( 1 2 ) )  X(l(2)) 

=(2(({1,2}*. {2,12. D))4,4 

= (2((({ 12} - {212}) . ((2) - {22))({01 + (2) + {22} + (41 + (421 + {421 + e . . )))4,4) 

= (2(({21*} -{2212}+{31) -{3221)+{412}+{42}+. . . ))4,4) 

= (2(212))+(2(31))+(2(41*))+(2(42)). . . (8.20) 

where (8.19) has been used to eliminate terms such as {313} and {3212} appearing in 
{ 1 :}2 and {2f}* as well as others appearing in the final product. The final result is in 
agreement with (8.9). 

There is of course a remarkable similarity between the formula (8.16) for tensor 
products of harmonic series unirreps and the simpler formula (7.10) for tensor products 
of holomorphic discrete series unirreps. Indeed (7.10) is a special case of (8.16) which 
applies if ( fk(p))  and (;I( Y)) are both highly standard. 

Whilst (8.16) is certainly easier to use than the technique based on (8.2) it may 
still involve considerable overcounting by virtue of the need to evaluate two signed 
sequences before multiplying by D and truncating via (8.17). 

The consideration of numerous examples lead us to conjecture the validity of the 
following somewhat simpler formula 

( % ( C L )  x (t l(  .)) 

= ( t ( k + I ) ( { ~ )  * { {Y~> IN  D N ) ) ) n  with N = min( n, I )  ( 8 . 2 1 ~ )  

= ( f ( k + I ) ( { v I  * {{t~s}h * D M I M ) ) n  (8.21b) 

The extra degree of simplification lies in the occurrence, in each of these alternative 
expressions, of a single signed sequence. This time however the symbol ( ; ( I C +  
is to be interpreted as a harmonic series unirrep of Sp(2n, R ) .  The modification converts 
it to standard form by means of a two stage procedure: first modification in O( k +  I )  
and then modification in U(n) .  Using these modification rules, we have for example 

(2(321)), = 0 for all n (8.22a) 

with M = min( n, k ) .  

for n 3 2  
for n = 1 

(2(3*2)), = { 012(32)) 
(2(6212)), = { i(2(612)) f o r n a 3  

for n = 1 , 2  

(8.22b) 

( 8 . 2 2 ~ )  
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where for (8.22b) it should be noted that 

[32] = [3*]* in O(4) 

whilst for ( 8 . 2 2 ~ )  use has been made of the identity 

[612] = [6]* in O(4). 

As an  exemplification of (8.216), we have 

(1(12)) X(l(2)) 

= (2({2} * ( {  12) + (3 I}  + {32) + {Sl} + {53) + (52) +. . . )))4 

= (2(212+ 31 + 321 + 32+ 322+ 412+42+431 + 51 + 521 + 2(53) 

+532+541+52+522+ . .  . ) ) 4  

= (2( 21 ')) + (2( 3 1)) + (2(412)) + (2(42)) + (2( 5 1 )) + (2( 53)) + . . . 
in agreement with (8.9). Use has been made of the modifications 

(2(321))4= (2(431))4= (2(521))4 = (2(541))4 = O 

(2(322))4 = -(2(32)) 

(2(532))4 = -(2(53)) 

(2(522))4 = -(2(52)). 

Similarly ( 8 . 2 1 ~ )  gives 

(1(12)) X(l(2)) 

= (2{12} ' ((2) - P2)) . 0) )4  

= (2((12} * ((2) +{31}+ (4) + (42) + {51} + (53}+. . . )))4 

= (2(212 + 31 + 313 + 321 + 2(412) + 42 + 4212+ 431 + 313 + . . , ))4 

= (2(2 12))  + (2(3 1)) + (2(412)) + (2(42)) + . . . 
thanks to the identities 

(2(313))4= (2(321)),= (2(431)),=0 

(2(421 2) )4  = -(2(412))4. 

The structure of the formulae ( 8 . 2 1 ~ )  and  (8.216) is worth some comment. They 
may be recast in the form 

(8.23a) 

(8.236) 

The notation of (5.13) has been used in which the coefficients Rj: and R :  are determined 
by the branching rules for the restrictions from U(k)  to O ( k )  and from U([) to O(/)  
respectively. In this form they are completely analogous to the recently derived rule 
(Black er a/ 1983) for evaluating tensor products of unirreps of the orthogonal group 
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O(2n) or O(2n + 1 )  which take the form 

[FI x [.I = c R1[{7) * {PI1 (8.24a) 

=e RE[{a>. {.)I (8.246) 

where the products signified by . are to be evaluated in U( n), with the final expression 
modified in O(2n) or O(2n + 1 )  as appropriate. It was in fact this analogy which led 
to the consideration of the conjecture (8.21). The basis of (8.24) lies in the fact that 
if p denotes half the sum of the positive roots of O(2n) or O(2n + 1) and pc half the 
sum of the positive roots of U(n)  then p - p c  = S where S is either (0, 0, . . . , 0 )  or 
(?,I,. . . , t ) .  The derivation depends only upon S being of the form (6,6,. . . , 6 )  
however. The fact that p - p c = p "  is precisely of this form in (3.46) supports the 
notion that the analogy between (8.23) and (8.24) may be exact save for the modification 
rules appropriate to each case. 

Further clues as to the validity of the conjecture (8.21) present themselves through 
a comparison with the result (8.19) in the case for which either ( i k ( p ) )  or ( f l ( v ) )  is 
highly standard, and with the known result 

( t k ( F ) ) x ( t l ( . ) ) = ( t ( k + l ) ( { F U . ) .  { V I  ' D)) (8.25) 

7 

.7 

1 1  

based on (7.10) if both unirreps are highly standard. 
Unfortunately we have not been able to establish a rigorous proof of (8.21). 
One further piece of evidence in support of (8.21) can be found by checking this 

rule against the known decomposition (Kashiwara and Vergne 1978) of powers of the 
basic harmonic representation d. Under the restriction from Sp(2n, R )  to U(n)  

(8.26a) = ( f ( 0 ) )  + (t( 1 ) )  + E"'M 
with 

M={O)+{l}+{2}+{3}+ . . . .  
From (8.21) it follows that 

A* = d x d = (1(({0) + { 1)) . M ) ) ,  

= (1({0) + {1}+ {2} + {3}+. . . +{ 1) + {2)+{12} 

+{3}+{21)+{4)+{5l}+ .  . . )), 
- ( 2 ( ~ 0 ~ + ~ 1 ~ ~ + 2 ~ 2 ~ + 2 ~ 3 ~ + 2 ~ 4 ~ + .  . . )) 

where use has been made of the fact that 

( l (ml ) )n  = O  for in > 1 .  

The expressions (8.26a) and (8.266) take the form 

(8.266) 

(8.27a, 6 )  

as can be seen by evaluating the dimensions &[A] of the unirrep [ A ]  of O ( k ) .  The 
generalisation of this result which suggests itself and which was derived by Kashiwara 
and Vergne (1978) is 

(8.28) 
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with the summation over all standard labels satisfying (4.4). This follows by induction 
from (8.16) and (8.18) and the case of (8.28) with k replaced by k-1. To see this, 
note that 

bk=dk-l x d = x  dk-l[p](+(k-l)(p)) X((i(O))+(+(l))) 
P 

=c dk-l[pl(fk({p) ' * 
(8.29) 

from (8.21) and (8.26). By hypothesis [p] is standard in O(k-1)  and if k is even 
multiplication by M can lead only to terms [ A ]  standard in O(k), whilst for k odd 
non-standard terms of O(k) may also arise which are subject to modification rules. 
These rules are precisely what are required to make all these non-standard contributions 
vanish identically. However it is well known that under the restriction from O( k) to 

[ A I +  [A/MI (8.30) 

O(k-1) 

so 

dk [ A 1 = dk - 1 [A / MI (8.31) 

This completes a very simple inductive 'derivation' of (8.28) based on the conjecture 
(8.21). 

The particular procedure followed in deriving (8.28) from (8.21) shows one very 
important facet of (8.21), namely the fact that although individually the formulae look 
asymmetric in ( p )  and (v), as a pair they are symmetrical. Which of ( 8 . 2 1 ~ )  and 
(8.21b) is to be used in a particular case depends upon the relative values of k and I 
and on the nature of ( p )  and (v). That there is a choice is very advantageous in some 
cases. 

9. Tensor products of harmonic unirreps of U(p, q )  

and 

with branching rules 

H + H x H - +  1 ({k(ij; p)}x{ii;  p } x { I ( ? ;  u)}x{?; U} 
P,V,OJ 
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and 
H + c  { k + 1 ( p ; A ) } x { p , A }  

A,P 

+ Z  { k + l ( p ; A ) } x  C Riif " " { F ; p } x { ? ; ( + }  (9.4) 
A,P  U,+, 7." 

where the coefficients R :  : ' ' are U( k + I )  + U( k )  x U( 1) branching rule coefficients. 
Hence 

for tensor products of U(p, q )  harmonic series unirreps (cf (8.15) for Sp(2n, R ) ) .  
Since for U( k + I )  2 U( k )  x U( 1) it is known that (King 1975) 

where it is to be understood that terms are paired together so that { F s ;  P,}~ and {f,; U,}' 

are signed sequences calculated through the use of modification rules of U(k )  and 
U(1) respectively. As in (8.19) it is also to be understood that 

Once more a conjecture similar to (8.21) can be formulated namely 

{ W P ;  p ) } x { I ( . T ;  d l = C { k + 1 ( { F } .  { ? J d '  {&; {PI +S>::' { s } P ) l p , q  (9.9) 
i 

with P = min( p ,  k) and Q = min(q, I ) ,  where the symbol { k +  I ( p ;  A)}p,g is to be inter- 
preted as a unirrep of U(p, q )  only after modifying { p ;  A }  first with respect to U ( k +  1) 
and then with respect to U( q )  x U( p ) .  

Just as 
10 

H = H o +  C (Hm+H- , )=C di{F;F}{1(F:p)}, (9.10) 
m = l  +. 

so the conjecture (9.9) can be used to generate by induction the result 

(9.11) 

as derived rigorously by Kashiwara and Vergne (1978). Of course (9.10) underlies the 
crucial formula (6.3) which serves to define the harmonic series unirreps of U(p, 4). 

10. Conclusions 

The results described here demonstrate that Schiir function methods have a useful role 
to play in studying the properties of holomorphic discrete series and harmonic series 
unirreps of the non-compact groups Sp(2n, R )  and U(p, 9). 

The branching rules from these groups to the maximal compact subgroups U( n )  
and U(q)  x U ( p )  respectively take the very simple forms (5.9) and (6.15) in the case 
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of the holomorphic discrete series unirreps (5.9) and (6.15). Although the general 
harmonic series unirreps are slightly more complicated to deal with this can be 
accomplished through the use of signed sequences as in (5.6) and (6.12). 

Furthermore tensor product formulae have been derived in all cases, along with 
the conjectures (8.21) and (9.9) which, if valid, very much simplify the evaluation of 
tensor products for Sp(2n, R )  and U(p, 4 ) .  

Little attention has been given to SO*(2n) but we suspect that comparable formulae 
can be derived in this case, it being merely necessary to change D to B and modify 
other rules appropriately. 
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